53 research outputs found

    Large Deviations Principle for a Large Class of One-Dimensional Markov Processes

    Full text link
    We study the large deviations principle for one dimensional, continuous, homogeneous, strong Markov processes that do not necessarily behave locally as a Wiener process. Any strong Markov process XtX_{t} in R\mathbb{R} that is continuous with probability one, under some minimal regularity conditions, is governed by a generalized elliptic operator DvDuD_{v}D_{u}, where vv and uu are two strictly increasing functions, vv is right continuous and uu is continuous. In this paper, we study large deviations principle for Markov processes whose infinitesimal generator is ϵDvDu\epsilon D_{v}D_{u} where 0<ϵ10<\epsilon\ll 1. This result generalizes the classical large deviations results for a large class of one dimensional "classical" stochastic processes. Moreover, we consider reaction-diffusion equations governed by a generalized operator DvDuD_{v}D_{u}. We apply our results to the problem of wave front propagation for these type of reaction-diffusion equations.Comment: 23 page

    Langevin dynamics with a tilted periodic potential

    Full text link
    We study a Langevin equation for a particle moving in a periodic potential in the presence of viscosity γ\gamma and subject to a further external field α\alpha. For a suitable choice of the parameters α\alpha and γ\gamma the related deterministic dynamics yields heteroclinic orbits. In such a regime, in absence of stochastic noise both confined and unbounded orbits coexist. We prove that, with the inclusion of an arbitrarly small noise only the confined orbits survive in a sub-exponential time scale.Comment: 38 pages, 6 figure

    Heat bounds and the blowtorch theorem

    Full text link
    We study driven systems with possible population inversion and we give optimal bounds on the relative occupations in terms of released heat. A precise meaning to Landauer's blowtorch theorem (1975) is obtained stating that nonequilibrium occupations are essentially modified by kinetic effects. Towards very low temperatures we apply a Freidlin-Wentzel type analysis for continuous time Markov jump processes. It leads to a definition of dominant states in terms of both heat and escape rates.Comment: 11 pages; v2: minor changes, 1 reference adde

    Dobrushin states in the \phi^4_1 model

    Full text link
    We consider the van der Waals free energy functional in a bounded interval with inhomogeneous Dirichlet boundary conditions imposing the two stable phases at the endpoints. We compute the asymptotic free energy cost, as the length of the interval diverges, of shifting the interface from the midpoint. We then discuss the effect of thermal fluctuations by analyzing the \phi^4_1-measure with Dobrushin boundary conditions. In particular, we obtain a nontrivial limit in a suitable scaling in which the length of the interval diverges and the temperature vanishes. The limiting state is not translation invariant and describes a localized interface. This result can be seen as the probabilistic counterpart of the variational convergence of the associated excess free energy.Comment: 34 page

    Large Deviations for Stochastic Evolution Equations with Small Multiplicative Noise

    Full text link
    The Freidlin-Wentzell large deviation principle is established for the distributions of stochastic evolution equations with general monotone drift and small multiplicative noise. As examples, the main results are applied to derive the large deviation principle for different types of SPDE such as stochastic reaction-diffusion equations, stochastic porous media equations and fast diffusion equations, and the stochastic p-Laplace equation in Hilbert space. The weak convergence approach is employed in the proof to establish the Laplace principle, which is equivalent to the large deviation principle in our framework.Comment: 31 pages, published in Appl. Math. Opti

    Time-averaging for weakly nonlinear CGL equations with arbitrary potentials

    Full text link
    Consider weakly nonlinear complex Ginzburg--Landau (CGL) equation of the form: ut+i(Δu+V(x)u)=ϵμΔu+ϵP(u),xRd,() u_t+i(-\Delta u+V(x)u)=\epsilon\mu\Delta u+\epsilon \mathcal{P}( u),\quad x\in {R^d}\,, \quad(*) under the periodic boundary conditions, where μ0\mu\geqslant0 and P\mathcal{P} is a smooth function. Let {ζ1(x),ζ2(x),}\{\zeta_1(x),\zeta_2(x),\dots\} be the L2L_2-basis formed by eigenfunctions of the operator Δ+V(x)-\Delta +V(x). For a complex function u(x)u(x), write it as u(x)=k1vkζk(x)u(x)=\sum_{k\geqslant1}v_k\zeta_k(x) and set Ik(u)=12vk2I_k(u)=\frac{1}{2}|v_k|^2. Then for any solution u(t,x)u(t,x) of the linear equation ()ϵ=0(*)_{\epsilon=0} we have I(u(t,))=constI(u(t,\cdot))=const. In this work it is proved that if equation ()(*) with a sufficiently smooth real potential V(x)V(x) is well posed on time-intervals tϵ1t\lesssim \epsilon^{-1}, then for any its solution uϵ(t,x)u^{\epsilon}(t,x), the limiting behavior of the curve I(uϵ(t,))I(u^{\epsilon}(t,\cdot)) on time intervals of order ϵ1\epsilon^{-1}, as ϵ0\epsilon\to0, can be uniquely characterized by a solution of a certain well-posed effective equation: ut=ϵμu+ϵF(u), u_t=\epsilon\mu\triangle u+\epsilon F(u), where F(u)F(u) is a resonant averaging of the nonlinearity P(u)\mathcal{P}(u). We also prove a similar results for the stochastically perturbed equation, when a white in time and smooth in xx random force of order ϵ\sqrt\epsilon is added to the right-hand side of the equation. The approach of this work is rather general. In particular, it applies to equations in bounded domains in RdR^d under Dirichlet boundary conditions

    The geometry of spontaneous spiking in neuronal networks

    Full text link
    The mathematical theory of pattern formation in electrically coupled networks of excitable neurons forced by small noise is presented in this work. Using the Freidlin-Wentzell large deviation theory for randomly perturbed dynamical systems and the elements of the algebraic graph theory, we identify and analyze the main regimes in the network dynamics in terms of the key control parameters: excitability, coupling strength, and network topology. The analysis reveals the geometry of spontaneous dynamics in electrically coupled network. Specifically, we show that the location of the minima of a certain continuous function on the surface of the unit n-cube encodes the most likely activity patterns generated by the network. By studying how the minima of this function evolve under the variation of the coupling strength, we describe the principal transformations in the network dynamics. The minimization problem is also used for the quantitative description of the main dynamical regimes and transitions between them. In particular, for the weak and strong coupling regimes, we present asymptotic formulas for the network activity rate as a function of the coupling strength and the degree of the network. The variational analysis is complemented by the stability analysis of the synchronous state in the strong coupling regime. The stability estimates reveal the contribution of the network connectivity and the properties of the cycle subspace associated with the graph of the network to its synchronization properties. This work is motivated by the experimental and modeling studies of the ensemble of neurons in the Locus Coeruleus, a nucleus in the brainstem involved in the regulation of cognitive performance and behavior

    Weak noise approach to the logistic map

    Full text link
    Using a nonperturbative weak noise approach we investigate the interference of noise and chaos in simple 1D maps. We replace the noise-driven 1D map by an area-preserving 2D map modelling the Poincare sections of a conserved dynamical system with unbounded energy manifolds. We analyze the properties of the 2D map and draw conclusions concerning the interference of noise on the nonlinear time evolution. We apply this technique to the standard period-doubling sequence in the logistic map. From the 2D area-preserving analogue we, in addition to the usual period-doubling sequence, obtain a series of period doubled cycles which are elliptic in nature. These cycles are spinning off the real axis at parameters values corresponding to the standard period doubling events.Comment: 22 pages in revtex and 8 figures in ep

    Abrupt Convergence and Escape Behavior for Birth and Death Chains

    Get PDF
    We link two phenomena concerning the asymptotical behavior of stochastic processes: (i) abrupt convergence or cut-off phenomenon, and (ii) the escape behavior usually associated to exit from metastability. The former is characterized by convergence at asymptotically deterministic times, while the convergence times for the latter are exponentially distributed. We compare and study both phenomena for discrete-time birth-and-death chains on Z with drift towards zero. In particular, this includes energy-driven evolutions with energy functions in the form of a single well. Under suitable drift hypotheses, we show that there is both an abrupt convergence towards zero and escape behavior in the other direction. Furthermore, as the evolutions are reversible, the law of the final escape trajectory coincides with the time reverse of the law of cut-off paths. Thus, for evolutions defined by one-dimensional energy wells with sufficiently steep walls, cut-off and escape behavior are related by time inversion.Comment: 2 figure

    Harmonic Systems With Bulk Noises

    Get PDF
    We consider a harmonic chain in contact with thermal reservoirs at different temperatures and subject to bulk noises of different types: velocity flips or self-consistent reservoirs. While both systems have the same covariances in the nonequilibrium stationary state (NESS) the measures are very different. We study hydrodynamical scaling, large deviations, fluctuations, and long range correlations in both systems. Some of our results extend to higher dimensions
    corecore